Linear Control Systems on Unbounded Time Intervals and Invariant Measures of Ornstein--Uhlenbeck Processes in Hilbert Spaces

نویسندگان

  • Marco Fuhrman
  • Anna Maria Paganoni
چکیده

We consider linear control systems in a Hilbert space over an unbounded time interval of the form y′ α(t) = (A− αI)yα(t) +Bu(t), t ∈ (−∞, T ], with bounded control operator B, under appropriate stability assumptions on the operator A. We study how the space of states reachable at time T depends on the parameter α ≥ 0. We apply the results to study the dependence on α of the Cameron–Martin spaces of the invariant measures of the Ornstein–Uhlenbeck processes Xα defined by the equation driven by the Wiener process W : dXα(t) = (A− αI)Xα(t) dt+B dW (t), t ≥ 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Statistical Study of two Diffusion Processes on Torus and Their Applications

Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...

متن کامل

Invariant Measures and Maximal L2 Regularity for Nonautonomous Ornstein-uhlenbeck Equations

We characterize the domain of the realizations of the linear parabolic operator G defined by (1.4) in L spaces with respect to a suitable measure, that is invariant for the associated evolution semigroup. As a byproduct, we obtain optimal L 2 regularity results for evolution equations with time-depending Ornstein-Uhlenbeck operators.

متن کامل

Non-differentiable Skew Convolution Semigroups and Related Ornstein-Uhlenbeck Processes

Abstract: It is proved that a general non-differentiable skew convolution semigroup associated with a strongly continuous semigroup of linear operators on a real separable Hilbert space can be extended to a differentiable one on the entrance space of the linear semigroup. A càdlàg strong Markov process on an enlargement of the entrance space is constructed from which we obtain a realization of ...

متن کامل

Cylindrical Lévy processes in Banach spaces

Cylindrical probability measures are finitely additive measures on Banach spaces that have sigma-additive projections to Euclidean spaces of all dimensions. They are naturally associated to notions of weak (cylindrical) random variable and hence weak (cylindrical) stochastic processes. In this paper we focus on cylindrical Lévy processes. These have (weak) Lévy-Itô decompositions and an associa...

متن کامل

Infinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes

We review the probabilistic properties of Ornstein-Uhlenbeck processes in Hilbert spaces driven by Lévy processes. The emphasis is on the different contexts in which these processes arise, such as stochastic partial differential equations, continuous-state branching processes, generalised Mehler semigroups and operator self-decomposable distributions. We also examine generalisations to the case...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2003